The two bars A and B shown make up the main parts of the Quick Return Mechanism. Pin p is fixed to A and bar B has a slot that allows pin p to move freely along the slot. Assume $\dot{\theta} = \omega_A \frac{\text{rad}}{\text{s}}$, a constant. Measure the angle θ from \hat{n}_1. Let the angular speed of bar B be given by $\dot{\beta} = \omega_B$, not constant. Measure the angle β from \hat{n}_1 as well. The work here is all kinematical and is essentially part of step 5 of the six step process. Use Mathematica and the vector tools. Follow previous quizzes and such posted on the class website.

1. Determine the following quantities as a function of θ:

 (a) the magnitude of the absolute velocity of pin p,

 (b) the magnitude of the absolute acceleration of pin p,

 (c) the velocity of pin p as seen from bar B expressed in vectors in B,

 (d) the acceleration of pin p as seen from bar B expressed in vectors in B,

 (e) the plots all of these quantities,

 (f) the point on each bar A and B that experiences the most acceleration during the motion, and

 (g) explain via analysis why it is called a “Quick Return” mechanism. Hint: look at β and its derivatives.

2. Animate the device allowing the parameters R and D to vary.

3. Find the ratio of R/D that allows the quickest return.